Aliases: (C22×C4).4A4, C23.16(C2×A4), Q8⋊A4.1C2, (C22×Q8).1C6, C22.3(C4.A4), C23.78C23⋊C3, C2.3(C24⋊C6), SmallGroup(192,196)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C23 — C22×Q8 — Q8⋊A4 — (C22×C4).A4 |
C22×Q8 — (C22×C4).A4 |
Generators and relations for (C22×C4).A4
G = < a,b,c,d,e,f | a2=b2=c4=f3=1, d2=e2=c2, faf-1=ab=ba, dcd-1=ac=ca, ad=da, ae=ea, ece-1=bc=cb, bd=db, be=eb, fbf-1=a, cf=fc, ede-1=c2d, fdf-1=c2de, fef-1=d >
Character table of (C22×C4).A4
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 3 | 3 | 16 | 16 | 4 | 4 | 12 | 12 | 12 | 12 | 16 | 16 | 16 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | -1 | 1 | 1 | -1 | ζ3 | ζ32 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ4 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | -1 | 1 | 1 | -1 | ζ32 | ζ3 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ5 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ6 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ7 | 2 | -2 | -2 | 2 | -1 | -1 | 2i | -2i | 0 | 0 | 0 | 0 | 1 | 1 | i | -i | i | -i | complex lifted from C4.A4 |
ρ8 | 2 | -2 | -2 | 2 | -1 | -1 | -2i | 2i | 0 | 0 | 0 | 0 | 1 | 1 | -i | i | -i | i | complex lifted from C4.A4 |
ρ9 | 2 | -2 | -2 | 2 | ζ65 | ζ6 | -2i | 2i | 0 | 0 | 0 | 0 | ζ32 | ζ3 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | complex lifted from C4.A4 |
ρ10 | 2 | -2 | -2 | 2 | ζ6 | ζ65 | 2i | -2i | 0 | 0 | 0 | 0 | ζ3 | ζ32 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | complex lifted from C4.A4 |
ρ11 | 2 | -2 | -2 | 2 | ζ6 | ζ65 | -2i | 2i | 0 | 0 | 0 | 0 | ζ3 | ζ32 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | complex lifted from C4.A4 |
ρ12 | 2 | -2 | -2 | 2 | ζ65 | ζ6 | 2i | -2i | 0 | 0 | 0 | 0 | ζ32 | ζ3 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | complex lifted from C4.A4 |
ρ13 | 3 | 3 | 3 | 3 | 0 | 0 | -3 | -3 | 1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ14 | 3 | 3 | 3 | 3 | 0 | 0 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ15 | 6 | 6 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C6 |
ρ16 | 6 | 6 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C6 |
ρ17 | 6 | -6 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ18 | 6 | -6 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(5 7)(6 8)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)
(1 3)(2 4)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 4 3 2)(5 21 7 23)(6 24 8 22)(9 12 11 10)(13 18 15 20)(14 17 16 19)
(1 11 3 9)(2 10 4 12)(5 8 7 6)(13 17 15 19)(14 20 16 18)(21 24 23 22)
(1 24 16)(2 21 13)(3 22 14)(4 23 15)(5 19 11)(6 20 12)(7 17 9)(8 18 10)
G:=sub<Sym(24)| (5,7)(6,8)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,3)(2,4)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4,3,2)(5,21,7,23)(6,24,8,22)(9,12,11,10)(13,18,15,20)(14,17,16,19), (1,11,3,9)(2,10,4,12)(5,8,7,6)(13,17,15,19)(14,20,16,18)(21,24,23,22), (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,19,11)(6,20,12)(7,17,9)(8,18,10)>;
G:=Group( (5,7)(6,8)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,3)(2,4)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4,3,2)(5,21,7,23)(6,24,8,22)(9,12,11,10)(13,18,15,20)(14,17,16,19), (1,11,3,9)(2,10,4,12)(5,8,7,6)(13,17,15,19)(14,20,16,18)(21,24,23,22), (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,19,11)(6,20,12)(7,17,9)(8,18,10) );
G=PermutationGroup([[(5,7),(6,8),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24)], [(1,3),(2,4),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,4,3,2),(5,21,7,23),(6,24,8,22),(9,12,11,10),(13,18,15,20),(14,17,16,19)], [(1,11,3,9),(2,10,4,12),(5,8,7,6),(13,17,15,19),(14,20,16,18),(21,24,23,22)], [(1,24,16),(2,21,13),(3,22,14),(4,23,15),(5,19,11),(6,20,12),(7,17,9),(8,18,10)]])
G:=TransitiveGroup(24,304);
Matrix representation of (C22×C4).A4 ►in GL6(𝔽3)
1 | 2 | 1 | 2 | 1 | 2 |
0 | 2 | 0 | 0 | 0 | 0 |
2 | 0 | 1 | 2 | 2 | 0 |
0 | 2 | 2 | 2 | 2 | 2 |
1 | 2 | 0 | 1 | 2 | 2 |
0 | 0 | 0 | 0 | 0 | 2 |
2 | 0 | 1 | 2 | 1 | 2 |
0 | 2 | 1 | 2 | 1 | 2 |
2 | 2 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 2 | 2 | 0 |
0 | 0 | 2 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 2 | 2 |
0 | 0 | 1 | 1 | 2 | 1 |
0 | 1 | 0 | 0 | 0 | 1 |
0 | 2 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 2 | 0 | 1 |
1 | 1 | 2 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 2 |
1 | 2 | 1 | 1 | 1 | 1 |
1 | 2 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 2 |
1 | 1 | 2 | 2 | 1 | 1 |
2 | 1 | 0 | 1 | 2 | 1 |
1 | 0 | 2 | 2 | 0 | 1 |
2 | 1 | 2 | 2 | 1 | 2 |
0 | 0 | 1 | 2 | 1 | 1 |
2 | 2 | 0 | 2 | 0 | 0 |
1 | 2 | 1 | 2 | 1 | 0 |
0 | 2 | 0 | 2 | 1 | 2 |
2 | 0 | 1 | 1 | 0 | 1 |
0 | 1 | 2 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 2 | 0 |
2 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 2 | 0 | 0 |
1 | 2 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 2 | 0 | 1 |
G:=sub<GL(6,GF(3))| [1,0,2,0,1,0,2,2,0,2,2,0,1,0,1,2,0,0,2,0,2,2,1,0,1,0,2,2,2,0,2,0,0,2,2,2],[2,0,2,1,0,1,0,2,2,1,0,1,1,1,1,1,2,1,2,2,0,2,1,0,1,1,1,2,1,2,2,2,0,0,1,2],[0,0,0,0,1,0,0,1,2,1,1,1,1,0,1,1,2,0,1,0,1,2,0,0,2,0,0,0,0,0,1,1,1,1,1,2],[1,1,1,1,2,1,2,2,1,1,1,0,1,0,1,2,0,2,1,1,1,2,1,2,1,1,0,1,2,0,1,0,2,1,1,1],[2,0,2,1,0,2,1,0,2,2,2,0,2,1,0,1,0,1,2,2,2,2,2,1,1,1,0,1,1,0,2,1,0,0,2,1],[0,1,2,1,1,1,1,0,1,1,2,0,2,0,0,0,0,0,1,1,1,2,1,2,0,2,0,0,0,0,0,0,0,0,0,1] >;
(C22×C4).A4 in GAP, Magma, Sage, TeX
(C_2^2\times C_4).A_4
% in TeX
G:=Group("(C2^2xC4).A4");
// GroupNames label
G:=SmallGroup(192,196);
// by ID
G=gap.SmallGroup(192,196);
# by ID
G:=PCGroup([7,-2,-3,-2,2,-2,2,-2,672,632,135,352,1683,262,521,248,851,1524]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^4=f^3=1,d^2=e^2=c^2,f*a*f^-1=a*b=b*a,d*c*d^-1=a*c=c*a,a*d=d*a,a*e=e*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=a,c*f=f*c,e*d*e^-1=c^2*d,f*d*f^-1=c^2*d*e,f*e*f^-1=d>;
// generators/relations
Export
Subgroup lattice of (C22×C4).A4 in TeX
Character table of (C22×C4).A4 in TeX